Lipoteichoic acids from Lactobacillus johnsonii strain La1 and Lactobacillus acidophilus strain La10 antagonize the responsiveness of human intestinal epithelial HT29 cells to lipopolysaccharide and gram-negative bacteria.

نویسندگان

  • Karine Vidal
  • Anne Donnet-Hughes
  • Dominique Granato
چکیده

Intestinal epithelial cells (IECs) respond to lipopolysaccharide (LPS) from gram-negative bacteria in the presence of the soluble form of CD14 (sCD14), a major endotoxin receptor. Since sCD14 is also known to interact with gram-positive bacteria and their components, we looked at whether sCD14 could mediate their effects on human IECs. To this end, we examined the production of proinflammatory cytokines following exposure of the IECs to specific gram-positive bacteria or their lipoteichoic acids (LTAs) in the absence and presence of human milk as a source of sCD14. In contrast to LPS from Escherichia coli or Salmonella enteritidis, neither the gram-positive bacteria Lactobacillus johnsonii strain La1 and Lactobacillus acidophilus strain La10 nor their LTAs stimulated IECs, even in the presence of sCD14. However, both LTAs inhibited the sCD14-mediated LPS responsiveness of IECs. We have previously hypothesized that sCD14 in human milk is a means by which the neonate gauges the bacterial load in the intestinal lumen and liberates protective proinflammatory cytokines from IECs. The present observations suggest that gram-positive organisms, via their LTAs, temper this response and prevent an exaggerated inflammatory response.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The human Lactobacillus acidophilus strain LA1 secretes a nonbacteriocin antibacterial substance(s) active in vitro and in vivo.

The adhering human Lactobacillus acidophilus strain LA1 inhibits the cell association and cell invasion of enteropathogens in cultured human intestinal Caco-2 cells (M. F. Bernet, D. Brassard, J. R. Neeser, and A. L. Servin, Gut 35:483-489, 1994). Here, we demonstrate that strain LA1 developed its antibacterial activity in conventional or germ-free mouse models orally infected by Salmonella typ...

متن کامل

Improvement of the human intestinal flora by ingestion of the probiotic strain Lactobacillus johnsonii La1.

To exert beneficial effects for the host, for example, improving the intestinal microflora, a probiotic must reach the intestine as a viable strain. These properties must be demonstrated by in vitro as well as in vivo methods. However, only a few well-designed human clinical studies have shown these properties. Lactobacillus johnsonii La1 has been shown to give many beneficial effects for the h...

متن کامل

Evaluation of the effect of probiotic bacteria Lactobacillus acidophilus PTCC1643 and Lactobacillus casei PTCC 1608 on the TLR2 and TLR4 expression in HT29 cells infected with Salmonella enteritidis

Background: Probiotics are living organisms that are beneficial for human health. Lactobacillus species has been considered as probiotic bacteria due to their adjustment of human immune responses and therapeutic effects in inflammatory disorders. The aim of the present study was to evaluate the effects of Lactobacillus probiotic strains on toll-like receptors (TLR2 and TLR4) expression in HT29 ...

متن کامل

Cell surface-associated elongation factor Tu mediates the attachment of Lactobacillus johnsonii NCC533 (La1) to human intestinal cells and mucins.

The aim of this work was to identify Lactobacillus johnsonii NCC533 (La1) surface molecules mediating attachment to intestinal epithelial cells and mucins. Incubation of Caco-2 intestinal epithelial cells with an L. johnsonii La1 cell wall extract led to the recognition of elongation factor Tu (EF-Tu) as a novel La1 adhesin-like factor. The presence of EF-Tu at the surface of La1 was confirmed ...

متن کامل

Survival of Lactobacillus Acidophilus as Probiotic Bacteria using Chitosan Nanoparticles

Chitosan was used for nanoencapsulation of Lactobacillus acidophilus as probiotic bacteria. In vitro experiments were done with the objective of investigating the survival of the bacteria cells in gastro-intestinal conditions. The results demonstrated that the size of chitosan nanoparticles noticeably increases by increasing chitosan concentration from 0.05 to 0.5 g/mL. Encapsulation of the cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Infection and immunity

دوره 70 4  شماره 

صفحات  -

تاریخ انتشار 2002